Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 870
Filtrar
1.
Acta Pharm Sin B ; 14(4): 1677-1692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572095

RESUMO

Chemotherapy-induced mucositis represents a severe adverse outcome of cancer treatment, significantly curtailing the efficacy of these treatments and, in some cases, resulting in fatal consequences. Despite identifying intestinal epithelial cell damage as a key factor in chemotherapy-induced mucositis, the paucity of effective treatments for such damage is evident. In our study, we discovered that Eubacterium coprostanoligenes promotes mucin secretion by goblet cells, thereby fortifying the integrity of the intestinal mucus barrier. This enhanced barrier function serves to resist microbial invasion and subsequently reduces the inflammatory response. Importantly, this effect remains unobtrusive to the anti-tumor efficacy of chemotherapy drugs. Mechanistically, E. copr up-regulates the expression of AUF1, leading to the stabilization of Muc2 mRNA and an increase in mucin synthesis in goblet cells. An especially significant finding is that E. copr activates the AhR pathway, thereby promoting the expression of AUF1. In summary, our results strongly indicate that E. copr enhances the intestinal mucus barrier, effectively alleviating chemotherapy-induced intestinal mucositis by activating the AhR/AUF1 pathway, consequently enhancing Muc2 mRNA stability.

3.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621895

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Sepse , Humanos , Medicina Tradicional Chinesa , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Apoptose , Transdução de Sinais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
4.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592962

RESUMO

How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.


Assuntos
Candida albicans , Mitocôndrias , Candida albicans/fisiologia , Fase S , Mitocôndrias/metabolismo , Ciclo Celular , Divisão Celular
5.
ACS Appl Mater Interfaces ; 16(15): 18949-18958, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569078

RESUMO

The nonuniform electric field at the surface of a zinc (Zn) anode, coupled with water-induced parasitic reactions, exacerbates the growth of Zn dendrites, presenting a significant impediment to large-scale energy storage in aqueous Zn-ion batteries. One of the most convenient strategies for mitigating dendrite-related issues involves controlling crystal growth through electrolyte additives. Herein, we present thiamine hydrochloride (THC) as an electrolyte additive capable of effectively stabilizing the preferential deposition of the Zn(002) plane. First-principles calculations reveal that THC tends to adsorb on Zn(100) and Zn(101) planes and is capable of inducing the deposition of Zn ion onto the (002) plane and the preferential growth of the (002) plane, resulting in a flat and compact deposition layer. A THC additive not only effectively suppresses dendrite growth but also prevents the generation of side reactions and hydrogen evolution reaction. Consequently, the Zn||Zn symmetric battery exhibits long-term cycling stability of over 3000 h at 1 mA cm-2/1 mAh cm-2 and 1000 h at 10 mA cm-2/10 mAh cm-2. Furthermore, the NH4V4O10||Zn full battery also displays excellent cycling stability and a high reversible capacity of 210 mAh g-1 after 1000 cycles at 1 A g-1, highlighting a significant potential for practical applications.

6.
ACS Appl Mater Interfaces ; 16(15): 18959-18970, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569111

RESUMO

Fe-based Prussian blue (Fe-PB) analogues have emerged as promising cathode materials for sodium-ion batteries, owing to their cost-effectiveness, high theoretical capacity, and environmental friendliness. However, their practical application is hindered by [Fe(CN)6] defects, negatively impacting capacity and cycle stability. This work reports a hollow layered Fe-PB composite material using 1,3,5-benzenetricarboxylic acid (BTA) as a chelating and etching agent by the hydrothermal method. Compared to benzoic acid, our approach significantly reduces defects and enhances the yield of Fe-PB. Notably, the hollow layered structure shortens the diffusion path of sodium ions, enhances the activity of low-spin Fe in the Fe-PB lattice, and mitigates volume changes during Na-ion insertion/extraction into/from Fe-PB. As a sodium-ion battery cathode, this hollow layered Fe-PB exhibits an impressive initial capacity of 95.9 mAh g-1 at a high current density of 1 A g-1. Even after 500 cycles, it still maintains a considerable discharge capacity of 73.1 mAh g-1, showing a significantly lower capacity decay rate (0.048%) compared to the control sample (0.089%). Moreover, the full cell with BTA-PB-1.6 as the cathode and HC as the anode provides a considerable energy density of 312.2 Wh kg-1 at a power density of 291.0 W kg-1. This research not only enhances the Na storage performance of Fe-PB but also increases the yield of products obtained by hydrothermal methods, providing some technical reference for the production of PB materials using the low-yield hydrothermal method.

7.
Food Chem ; 450: 139349, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631205

RESUMO

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.

8.
J Colloid Interface Sci ; 667: 597-606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657543

RESUMO

Self-supported electrodes, featuring abundant active species and rapid mass transfer, are promising for practical applications in water electrolysis. However, constructing efficient self-supported electrodes with a strong affinity between the catalytic components and the substrate is of great challenge. In this study, by combining the ideas of in-situ construction and space-confined growth, we designed a novel self-supported FeOOH/cobalt phosphide (CoP) heterojunctions grown on a carefully modified commercial Ni foam (NF) with three-dimensional (3D) hierarchically porous Ni skeleton (FeOOH/CoP/3D NF). The specific porous structure of 3D NF directs the confined growth of FeOOH/CoP catalyst into ultra-thin and small-sized nanosheet arrays with abundant edge active sites. The active FeOOH/CoP component is stably anchored on the rough pore wall of 3D NF support, leading to superior stability and improved conductivity. These structural advantages contributed to a highly facilitated oxygen evolution reaction (OER) activity and enhanced durability of the FeOOH/CoP/3D NF electrode. Herein, the FeOOH/CoP/3D NF electrode afforded a low overpotential of 234 mV at 10 mA cm-2 (41 mV smaller than FeOOH/CoP grown on unmodified Ni foam) and high stability for over 90 h, which is among the top reported OER catalysts. Our study provides an effective idea and technique for the construction of active and robust self-supported electrodes for water electrolysis.

9.
Inorg Chem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648287

RESUMO

Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.

10.
J Hazard Mater ; 470: 134171, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569339

RESUMO

In lake ecosystems, pelagic-benthic coupling strength (PBCS) is closely related to foodweb structure and pollutant transport. However, the trophic transfer of antibiotics in a benthic-pelagic coupling foodweb (BPCFW) and the manner in which PBCS influences the trophic magnification factor (TMFs) of antibiotics is still not well understood in the whole lake. Herein, the trophic transfer behavior of 12 quinolone antibiotics (QNs) in the BPCFW of Baiyangdian Lake were studied during the period of 2018-2019. It was revealed that 24 dominant species were contained in the BPCFW, and the trophic level was 0.42-2.94. Seven QNs were detected in organisms, the detection frequencies of ofloxacin (OFL), flumequine (FLU), norfloxacin (NOR), and enrofloxacin (ENR) were higher than other QNs. The ∑QN concentration in all species was 11.3-321 ng/g dw. The TMFs for ENR and NOR were trophic magnification, while for FLU/OFL it was trophic dilution. The PBCS showed spatial-temporal variation, with a range of 0.6977-0.7910. The TMFs of ENR, FLU, and OFL were significantly positively correlated with PBCS. Phytoplankton and macrophyte biomasses showed indirect impact on the TMFs of QNs by directly influencing the PBCS. Therefore, the PBCS was the direct influencing factor for the TMFs of chemicals.


Assuntos
Antibacterianos , Monitoramento Ambiental , Cadeia Alimentar , Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Quinolonas , China
11.
Am J Cancer Res ; 14(3): 1217-1226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590412

RESUMO

The presence of bone metastases (BM) in patients with lung cancer is indicative of a worse prognosis. The present study aims to investigate the risk factors associated with BM in patients with lung cancer. Patients with lung cancer admitted to the First Affiliated Hospital of Anhui Medical University between June 2019 and September 2021 were enrolled in this study. A nomogram was constructed based on the outcomes derived from univariate and multivariate analyses. Concordance index, calibration plots, receiver operating characteristic curves, and decision curve analysis were used to evaluate the nomogram. To substantiate the influence of monocytes on lung cancer BM, various assays, including cell co-culture, Transwell, wound-healing assays, and immunohistochemistry and immunofluorescence staining, were conducted. Statistical analyses were performed using SPSS 22.0 software and GraphPad Prism 7.0. A total of 462 eligible patients were enrolled, comprising 220 with BM and 242 without. Multivariate analysis revealed that histological type, medical history, monocyte percentage, and LDH (Lactate Dehydrogenase) and ALP (Alkaline Phosphatase) levels were independent risk factors for BM in lung cancer. Transwell and wound-healing assays indicated that co-culture with monocytes significantly enhanced the migration and invasion capabilities of A549 cells in vitro. Immunohistochemistry and immunofluorescence analyses demonstrated a noteworthy increase in monocyte infiltration in the primary lesions of patients with lung cancer with BM. In conclusion, this study successfully constructed and validated a precise, straightforward, and cost-effective prognostic nomogram for patients with lung cancer with BM.

12.
RSC Adv ; 14(16): 11089-11097, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38586441

RESUMO

Because traditional lithium-ion batteries have been unable to meet the energy density requirements of various emerging fields, lithium-metal batteries (LMBs), known for their high energy density, are considered promising next-generation energy storage batteries. However, a series of problems, including low coulombic efficiency and low safety caused by dendrites, limit the application of lithium metal batteries. Herein, fluoro-oxygen codoped graphene (FGO) was used to modify the copper current collector (FGO@Cu). FGO-coated current collector provides more even nucleation sites to reduce the local effective current density. FGO is partly reduced during cycling and helps form stable LiF-rich SEI. Moreover, graphene's oxygen and fluorine functional groups reconstruct the current density distribution, promoting uniform lithium plating. The FGO@Cu current collector demonstrates superior properties than commercial Cu foil. The FGO@Cu delivers a 97% high CE for over 250 cycles at 1 mA cm-2. The FGO@Cu symmetrical battery cycled at 1 mA cm-2 for over 650 h. LiFePO4 fuel cell with a lithium-plated FGO@Cu collector as an anode exhibits superior cycling stability.

13.
Small ; : e2400149, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528389

RESUMO

Layered Na2FePO4F (NFPF) cathode material has received widespread attention due to its green nontoxicity, abundant raw materials, and low cost. However, its poor inherent electronic conductivity and sluggish sodium ion transportation seriously impede its capacity delivery and cycling stability. In this work, NFPF by Ti doping and conformal carbon layer coating via solid-state reaction is modified. The results of experimental study and density functional theory calculations reveal that Ti doping enhances intrinsic conductivity, accelerates Na-ion transport, and generates more Na-ion storage sites, and pyrolytic carbon from polyvinylpyrrolidone (PVP) uniformly coated on the NFPF surface improves the surface/interface conductivity and suppresses the side reactions. Under the combined effect of Ti doping and carbon coating, the optimized NFPF (marked as 5T-NF@C) exhibits excellent electrochemical performance, with a high capacity of 108.4 mAh g-1 at 0.2C, a considerable capacity of 80.0 mAh g-1 even at high current density of 10C, and a high capacity retention rate of 81.8% after 2000 cycles at 10C. When assembled into a full cell with a hard carbon anode, 5T-NF@C also show good applicability. This work indicates that co-modification of Ti doping and carbon coating makes NFPF achieve high rate and long cycle performance for sodium-ion batteries.

14.
J Colloid Interface Sci ; 665: 32-40, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513406

RESUMO

Aqueous zinc-ion batteries (AZIBs), defined by low expenses, superior safety, and plentiful reserves, demonstrate tremendous development potential in energy storage systems at the grid scale. Whereas the cathode instability and the limited diffusion of Zn2+ have impeded the development of AZIBs. Herein, a high-performance K-NH4V4O10 (K-NVO) cathode with K+ doping synthesized successfully through one-step hydrothermal approach. Experiments and density functional theory (DFT) calculations indicate that K-NVO has Zn2+ diffusion pathways with lower barriers for smoother transport, and lower formation energy. The combination of the rapid Zn2+ diffusion and the stable structure results in outstanding electrochemical performance of K-NVO as demonstrated in tests. K-NVO cathode achieves a specific capacity of 406 mAh g-1 at 0.2 A g-1, maintains satisfactory cyclic stability with 81.6 % capacity retention after 1000 cycles at 5 A g-1, and possesses a high energy density of 350.9 Wh kg-1. Furthermore, confirmation of the zinc storage mechanism in K-NVO was carried out through Ex situ tests, such as XRD and XPS. This research contributes a unique perspective to the formulation of high-performance cathode materials for AZIBs.

15.
Sci Total Environ ; 926: 171938, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527541

RESUMO

Dimethyl sulfoxide (DMSO), a versatile medium, is a particular component in the marine atmosphere that possibly causes polycyclic aromatic hydrocarbons (PAHs) to degrade differently than they do in the continental atmosphere. In this study, phenanthrene (Phe) was used as a model PAH in batch photochemical experiments to investigate the chemical actions of DMSO and the underlying mechanisms. The photodegradation of Phe in aqueous solutions with DMSO volume fractions from 0 % to 100 % was initiated by ultraviolet (UV) radiation and promoted by singlet oxygen, which was consistent with pseudo-first-order kinetics. Phe photodegraded faster in a mixture of DMSO and water than in water or DMSO alone, and the rate constant showed a unimodal distribution over the DMSO fraction range, peaking at 33 % DMSO (0.0333 ± 0.0009 min-1) and 40 % DMSO (0.0199 ± 0.0005 min-1) under 254 nm and 302 nm UV radiation, respectively. This interesting phenomenon was attributed to the competition of DMSO for UV radiation and singlet oxygen and changes in dissolved oxygen and free water contents caused by the interaction between DMSO and water molecules. In addition, 9,10-phenanthrenequinone (9,10-PhQ) with high cytotoxicity was the main photodegradation product of Phe under various conditions. The photodegradation rate of Phe in the mixtures of DMSO and water was comparable to its reaction rate with OH radicals, suggesting that 9,10-PhQ can be rapidly generated in the marine atmosphere, driven by a mechanism different from that in the continental or urban atmosphere. Under the presented experimental conditions, UV intensity and DMSO fraction were the primary factors that affected the photodegradation rate of Phe and 9,10-PhQ and altered their integrated toxicity. The findings of this study support the conclusion that the marine atmosphere is an essential field in the atmospheric transport of PAHs, in which DMSO is an important component that affects their photodegradation.

16.
Biochem Pharmacol ; 223: 116125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484850

RESUMO

Bladder cancer (BC) is the most common malignant tumor in urinary system. Although chemotherapy is one of the most important adjuvant treatments for BC, drug resistance, non-specific toxicity and severe side effects are the major obstacles to BC chemotherapy. Natural products have always been a leading resource of antitumor drug discovery, with the advantages of excellent effectiveness, low toxicity, multi-targeting potency and easy availability. In this study, we evaluated the potential anti-tumor effect of securinine (SEC), a natural alkaloid from Securinega suffruticosa, on BC cells in vitro and in vivo, and delineated the underlying mechanism. We found that SEC inhibited the proliferation, migration and invasion, induced the apoptosis of BC cells in vitro, and retarded the xenograft tumor growth of BC cell in vivo. Notably, SEC had a promising safety profile because it presented no or low toxicity on normal cells and mice. Mechanistically, SEC inactivated Wnt/ß-catenin signaling pathway while activated p38 and JNK signaling pathway. Moreover, ß-catenin overexpression, the p38 inhibitor SB203580 and the JNK inhibitor SP600125 both mitigated the inhibitory effect of SEC on BC cells. Furthermore, we demonstrated a synergistic inhibitory effect of SEC and gemcitabine (GEM) on BC cells in vitro and in vivo. Taken together, our findings suggest that SEC may exert anti-BC cell effect at least through the activation of p38 and JNK signaling pathways, and the inhibition of Wnt/ß-catenin signaling pathway. More meaningfully, the findings indicate that GEM-induced BC cell killing can be enhanced by combining with SEC.


Assuntos
Antineoplásicos , Azepinas , Compostos Heterocíclicos de Anel em Ponte , Lactonas , Piperidinas , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Via de Sinalização Wnt , Sistema de Sinalização das MAP Quinases , Proliferação de Células , Antineoplásicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , beta Catenina/metabolismo , Movimento Celular , Apoptose
17.
J Sci Food Agric ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445510

RESUMO

BACKGROUND: Excessive NaCl intake in liquid and semi-solid food (e.g. soup, hot pot base, sauce) poses a high risk to human health, and reducing NaCl intake is a major concern for global health. RESULTS: Using the generalized Labeled Magnitude Scale (gLMS) method, the study verified the possibility of sodium reduction through oil addition. The compromised acceptance threshold (CAT) and hedonic rejection threshold (HRT) were determined. The gLMS results showed that the saltiness intensity of samples containing 0.36% NaCl and 2.29% sunflower seed oil was significantly higher than that of samples containing only 0.36% NaCl (P < 0.05). CAT and HRT results indicated that by adding 3.59% sunflower oil, the NaCl content could be reduced to a minimum of 0.14% without causing sensory rejection in bone broth samples. The quantitative descriptive analysis method was used to determine the effects of NaCl and oil concentrations on the sensory attributes of bone broth samples. Furthermore, it was used to analyze the consumer acceptability drivers in combination with the hedonic scale to optimize the formulation of reduced-salt bone broth products. Notably, sample E (0.36% NaCl, 2.29% fat) not only had a significant salt reduction effect with a 20% decrease in NaCl, but also had improved overall acceptability. CONCLUSION: This study provides theoretical guidance for designing salt-reduction cuisine within the catering and food industries, including bone broth and hot pot bases. © 2024 Society of Chemical Industry.

18.
J Hazard Mater ; 470: 134116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547753

RESUMO

Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and ß-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.


Assuntos
Brassinosteroides , Glutationa , Homeostase , Oxirredução , Fotossíntese , Pinellia , Esteroides Heterocíclicos , Fotossíntese/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Brassinosteroides/metabolismo , Pinellia/metabolismo , Pinellia/efeitos dos fármacos , Pinellia/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Plásticos/metabolismo , Sitosteroides/metabolismo , Flavonoides/metabolismo
19.
Front Plant Sci ; 15: 1357924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469328

RESUMO

Optimized flowering time is an important trait that ensures successful plant adaptation and crop productivity. SOC1-like genes encode MADS transcription factors, which are known to play important roles in flowering control in many plants. This includes the best-characterized eudicot model Arabidopsis thaliana (Arabidopsis), where SOC1 promotes flowering and functions as a floral integrator gene integrating signals from different flowering-time regulatory pathways. Medicago truncatula (Medicago) is a temperate reference legume with strong genomic and genetic resources used to study flowering pathways in legumes. Interestingly, despite responding to similar floral-inductive cues of extended cold (vernalization) followed by warm long days (VLD), such as in winter annual Arabidopsis, Medicago lacks FLC and CO which are key regulators of flowering in Arabidopsis. Unlike Arabidopsis with one SOC1 gene, multiple gene duplication events have given rise to three MtSOC1 paralogs within the Medicago genus in legumes: one Fabaceae group A SOC1 gene, MtSOC1a, and two tandemly repeated Fabaceae group B SOC1 genes, MtSOC1b and MtSOC1c. Previously, we showed that MtSOC1a has unique functions in floral promotion in Medicago. The Mtsoc1a Tnt1 retroelement insertion single mutant showed moderately delayed flowering in long- and short-day photoperiods, with and without prior vernalization, compared to the wild-type. In contrast, Mtsoc1b Tnt1 single mutants did not have altered flowering time or flower development, indicating that it was redundant in an otherwise wild-type background. Here, we describe the generation of Mtsoc1a Mtsoc1b Mtsoc1c triple mutant lines using CRISPR-Cas9 gene editing. We studied two independent triple mutant lines that segregated plants that did not flower and were bushy under floral inductive VLD. Genotyping indicated that these non-flowering plants were homozygous for the predicted strong mutant alleles of the three MtSOC1 genes. Gene expression analyses using RNA-seq and RT-qPCR indicated that these plants remained vegetative. Overall, the non-flowering triple mutants were dramatically different from the single Mtsoc1a mutant and the Arabidopsis soc1 mutant; implicating multiple MtSOC1 genes in critical overlapping roles in the transition to flowering in Medicago.

20.
Adv Healthc Mater ; : e2303388, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537119

RESUMO

Repairing spinal cord injury (SCI) is a global medical challenge lacking effective clinical treatment. Developing human-engineered spinal cord tissues that can replenish lost cells and restore a regenerative microenvironment offers promising potential for SCI therapy. However, creating vascularized human spinal cord-like tissues (VSCT) that mimic the diverse cell types and longitudinal parallel structural features of spinal cord tissues remains a significant hurdle. In the present study, VSCTs are engineered using embryonic human spinal cord-derived neural and endothelial cells on linear-ordered collagen scaffolds (LOCS). Studies have shown that astrocytes and endothelial cells align along the scaffolds in VSCT, supporting axon extension from various human neurons myelinated by oligodendrocytes. After transplantation into SCI rats, VSCT survives at the injury sites and promotes endogenous neural regeneration and vascularization, ultimately reducing scarring and enhancing behavioral functional recovery. It suggests that pre-vascularization of engineered spinal cord tissues is beneficial for SCI treatment and highlights the important role of exogenous endothelial cells in tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...